If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+8t+6=0
a = 1; b = 8; c = +6;
Δ = b2-4ac
Δ = 82-4·1·6
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{10}}{2*1}=\frac{-8-2\sqrt{10}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{10}}{2*1}=\frac{-8+2\sqrt{10}}{2} $
| Y=175/0.7^x | | 13x+2=5x-20 | | 13x-2=5x-20 | | (1÷x-1)+(2÷x-2)=3÷x-3 | | 3m^2+10m-2=0 | | 2.4x-8.72=5.2 | | 2-7y=-42 | | 3/x=35/40 | | x-5x-10=92x-7 | | 3t+14t=5 | | 7^(-x+7)=15^(7x) | | x2+⁴x+8=0 | | 200X^2+100x-2=0 | | 85=4n-15 | | X^2-6.92x+3=0 | | a2-10a=23 | | s-39+s=475 | | 0.25(n)=22 | | 5x/2+3=7x/4 | | 0.07(n)=14 | | X-3/x+1=1/2 | | s-39+s=275 | | X2-4x=-1 | | X+3/6+1=6x-1/3 | | Z2-5z+2=0 | | 13x-5=2.68 | | 2(3x-1)+7/2=5x-2(2x-7) | | x^2−7x+6=0 | | 84-7x=5x | | x(x+5)=6x^2+1 | | 5x+14=x-(24+4x) | | 7(y-1)/2=4+3y |